Lipschitzian Superposition Operators between Spaces of Functions of Bounded Generalized Variation with Weight
نویسنده
چکیده
We present some properties of real valued functions of bounded generalized variation of Riesz–Orlicz type including weight and characterize Lipschitzian superposition Nemytskii operators which map between spaces (in fact, Banach algebras) of these functions.
منابع مشابه
Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملWeighted composition operators between Lipschitz algebras of complex-valued bounded functions
In this paper, we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces, not necessarily compact. We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators. We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملSuperposition operators between weighted Banach spaces of analytic functions of controlled growth
We characterize the entire functions which transform a weighted Banach space of holomorphic functions on the disc of type H∞ into another such space by superposition. We also show that all the superposition operators induced by such entire functions map bounded sets into bounded sets and are continuous. Superposition operators that map bounded sets into relatively compact sets are also considered.
متن کامل